Consider the problem (\mathcal{P}) of minimizing a continuous convex function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ over the affine subspace $V=\left\{x \in \mathbb{R}^{N}: A x=b\right\}$, for given $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^{M}$.

1. If ι_{V} denotes the indicator function of V, prove that $\partial \iota_{V}(x)=\operatorname{ran}\left(A^{*}\right)$ for each $x \in V$. Suggestion: How is V related to $\operatorname{ker}(A)\left(=\operatorname{ran}\left(A^{*}\right)^{\perp}\right)$?
For any $x_{0} \in V$, we have $V=x_{0}+\operatorname{ker}(A)$. As seen in class, $\partial \iota_{V}(x)=\emptyset$ if $x \notin V$ and $\partial_{\iota_{V}}(x)=\{z: z \cdot(v-x) \leq 0 \forall v \in V\}=\{z: z \cdot v \leq 0 \forall v \in \operatorname{ker}(A)\}=\operatorname{ker}(A)^{\perp}=\operatorname{ran}\left(A^{*}\right)$ if $x \in V$.
2. Use the first order optimality condition for (\mathcal{P}), obtained from Fermat's Rule, to show that \hat{x} is a solution of (\mathcal{P}) if, and only if, $A \hat{x}=b$ and there exists $\hat{y} \in \mathbb{R}^{M}$ such that $-A^{*} \hat{y} \in \partial f(\hat{x}) .{ }^{1}$ We say (\hat{x}, \hat{y}) is an optimal pair. Is this related to Lagrange multipliers? The problem is to minimize $f+\iota_{V}$ over \mathbb{R}^{N}. By convexity, \hat{x} is a solution if, and only if, $0 \in \partial f(\hat{x})+\partial \iota_{V}(\hat{x})$, which means that $\hat{x} \in V$ and $0 \in \partial f(\hat{x})+\hat{z}$ for some $\hat{z} \in \operatorname{ran}\left(A^{*}\right)$. This is equivalent to saying that there is $\hat{y} \in \mathbb{R}^{M}$ such that $-A^{*} \hat{y} \in \partial f(\hat{x})$. The Lagrange multiplier theorem seen in class for the differentiable case (Lecture 9) gives $-A^{*} \hat{y} \in \nabla f(\hat{x})$ (see also Lecture 11).
3. Define the Lagrangian of the problem by $\mathcal{L}(x, y)=f(x)+y \cdot(A x-b)$, for $(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{M}$. Show that if (\hat{x}, \hat{y}) is an optimal pair, then

$$
\mathcal{L}(\hat{x}, y) \leq \mathcal{L}(\hat{x}, \hat{y}) \leq \mathcal{L}(x, \hat{y})
$$

for all $(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{M}$.
The first inequality is an equality because $A \hat{x}=b$. Now, since $-A^{*} \hat{y} \in \nabla f(\hat{x})$, the subgradient inequality gives $f(x) \geq f(\hat{x})-A^{*} \hat{y} \cdot(x-\hat{x})$. It suffices to add $y \cdot(A x-b)$ on both sides (and use the property of the transpose) to get the second inequality.

In what follows, we establish the convergence of the algorithm given by

$$
\left\{\begin{array}{l}
p_{k+1}=\operatorname{argmax}\left\{\mathcal{L}\left(x_{k}, y\right)-\frac{1}{2 \gamma}\left\|y-y_{k}\right\|^{2}: y \in \mathbb{R}^{M}\right\} \\
x_{k+1}=\operatorname{argmin}\left\{\mathcal{L}\left(x, p_{k+1}\right)+\frac{1}{2 \gamma}\left\|x-x_{k}\right\|^{2}: x \in \mathbb{R}^{N}\right\} \\
y_{k+1}=\operatorname{argmax}\left\{\mathcal{L}\left(x_{k+1}, y\right)-\frac{1}{2 \gamma}\left\|y-y_{k}\right\|^{2}: y \in \mathbb{R}^{M}\right\}
\end{array}\right.
$$

with $\gamma>0$, and starting from an initial point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{M}$.
4. Write the optimality conditions corresponding to the three subiterations, in order to find closed formulas for p_{k+1} and y_{k+1}, and to express x_{k+1} in terms of a proximal step.
In the first, the functions involved are differntiable, so the optimality condition is $A x_{k}-b+$ $\frac{1}{\gamma}\left(p_{k+1}-y_{k}\right)$. In other words, $p_{k+1}=y_{k}+\gamma\left(A x_{k}-b\right)$. Similarly, $y_{k+1}=y_{k}+\gamma\left(A x_{k+1}-b\right)$. For the second inequality, we have $0 \in \partial f\left(x_{k+1}\right)+A^{*} p_{k+1}+\frac{1}{\gamma}\left(x_{k+1}-x_{k}\right)$, which is the same as $x_{k+1}=(I+\gamma \partial f)^{-1}\left(x_{k}-\gamma A^{*} p_{k+1}\right)$.
In parts 5, 6 and $7,(\hat{x}, \hat{y})$ is any optimal pair.
5. Prove that

$$
\begin{aligned}
2 \gamma\left(\mathcal{L}\left(x_{k+1}, p_{k+1}\right)-\mathcal{L}\left(\hat{x}, p_{k+1}\right)\right) & \leq\left\|x_{k}-\hat{x}\right\|^{2}-\left\|x_{k+1}-\hat{x}\right\|^{2}-\left\|x_{k+1}-x_{k}\right\|^{2} \\
2 \gamma\left(\mathcal{L}\left(x_{k+1}, \hat{y}\right)-\mathcal{L}\left(x_{k+1}, y_{k+1}\right)\right) & \leq\left\|y_{k}-\hat{y}\right\|^{2}-\left\|y_{k+1}-\hat{y}\right\|^{2}-\left\|y_{k+1}-y_{k}\right\|^{2} \\
2 \gamma\left(\mathcal{L}\left(x_{k+1}, y_{k+1}\right)-\mathcal{L}\left(x_{k+1}, p_{k+1}\right)\right) & \leq \delta\left\|y_{k+1}-p_{k+1}\right\|^{2}+\frac{1}{\delta}\left\|y_{k+1}-y_{k}\right\|^{2}
\end{aligned}
$$

[^0]for every $k \geq 0$ and $\delta>0$. Suggestion: Remember (1) the definition of subgradient, and (2) that $2 a b \leq \delta a^{2}+\frac{1}{\delta} b^{2}$ for $a, b, \delta>0$.

By $4,-A^{*} p_{k+1}-\frac{1}{\gamma}\left(x_{k+1}-x_{k}\right) \in \partial f\left(x_{k+1}\right)$. Using the subgradient inequality, we obtain

$$
\begin{aligned}
2 \gamma \mathcal{L}\left(\hat{x}, p_{k+1}\right) & =2 \gamma f(\hat{x}) \\
& \geq 2 \gamma f\left(x_{k+1}\right)-2 \gamma\left(A^{*} p_{k+1}+\frac{1}{\gamma}\left(x_{k+1}-x_{k}\right)\right) \cdot\left(\hat{x}-x_{k+1}\right) \\
& =2 \gamma f\left(x_{k+1}\right)-2 \gamma A^{*} p_{k+1} \cdot\left(\hat{x}-x_{k+1}\right)+2\left(x_{k+1}-x_{k}\right) \cdot\left(\hat{x}-x_{k+1}\right) \\
& \left.=2 \gamma \mathcal{L}\left(x_{k+1}, p_{k+1}\right)+2\left(x_{k+1}-x_{k}\right)\right) \cdot\left(\hat{x}-x_{k+1}\right) .
\end{aligned}
$$

We use $\|a \pm b\|^{2}=\|a\|^{2}+\|b\|^{2} \pm 2 a \cdot b$ conveniently to obtain the first inequality. The second inequality is obtained by rewriting the left-hand side as $2 \gamma\left(\hat{y}-y_{k+1}\right) \cdot\left(A x_{k+1}-b\right)=$ $2\left(\hat{y}-y_{k+1}\right) \cdot\left(y_{k+1}-y_{k}\right)$. For the last one, we use Cauchy-Schwarz inequality and the second suggestion.
6. Show that if $\gamma\|A\|<1$, there is $\varepsilon>0$ such that

$$
\left\|x_{k+1}-\hat{x}\right\|^{2}+\left\|y_{k+1}-\hat{y}\right\|^{2}+2 \gamma\left(\mathcal{L}\left(x_{k+1}, \hat{y}\right)-\mathcal{L}\left(\hat{x}, p_{k+1}\right)\right)+\varepsilon\left\|A x_{k+1}-b\right\|^{2} \leq\left\|x_{k}-\hat{x}\right\|^{2}+\left\|y_{k}-\hat{y}\right\|^{2}
$$

for every $k \geq 0$.
We sum the three inequalities in 5 and choose δ appropriately to cancel the remaining terms: First observe that $\left\|y_{k+1}-p_{k+1}\right\|=\left\|\gamma A\left(x_{k+1}-x_{k}\right)\right\| \leq \gamma\|A\|\left\|x_{k+1}-x_{k}\right\|$. If we take $\delta \in\left(1,(\gamma\|A\|)^{-2}\right)$ both $\left\|x_{k+1}-x_{k}\right\|^{2}$ and $\left\|y_{k+1}-y_{k}\right\|^{2}$ remain with negative coefficients. Actually, we have proved that there exist $\varepsilon_{1}, \varepsilon_{2}>0$ such that

$$
\begin{gathered}
\left\|x_{k+1}-\hat{x}\right\|^{2}+\left\|y_{k+1}-\hat{y}\right\|^{2}+2 \gamma\left(\mathcal{L}\left(x_{k+1}, \hat{y}\right)-\mathcal{L}\left(\hat{x}, p_{k+1}\right)\right)+\varepsilon_{1}\left\|A x_{k+1}-b\right\|^{2}+\varepsilon_{2}\left\|x_{k+1}-x_{k}\right\|^{2} \\
\leq\left\|x_{k}-\hat{x}\right\|^{2}+\left\|y_{k}-\hat{y}\right\|^{2}
\end{gathered}
$$

for every $k \geq 0$.
7. Deduce that $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=f(\hat{x})$ and $\lim _{k \rightarrow \infty} A x_{k}=b$.

Using the telescopic property, we see that the nonnegative series $\sum\left(\mathcal{L}\left(x_{k+1}, \hat{y}\right)-\mathcal{L}\left(\hat{x}, p_{k+1}\right)\right)$ and $\sum\left\|A x_{k+1}-b\right\|^{2}$ are convergent, so their general terms go to 0 .
8. Prove that $\left(x_{k}, y_{k}\right)$ converges to an optimal pair. Suggestion: Verify that for every optimal pair $(\hat{x}, \hat{y}), \lim _{k \rightarrow \infty}\left[\left\|x_{k}-\hat{x}\right\|^{2}+\left\|y_{k}-\hat{y}\right\|^{2}\right]$ exists.
From 6, the nonnegative sequence $\left\|x_{k}-\hat{x}\right\|^{2}+\left\|y_{k}-\hat{y}\right\|^{2}$ is nonincreasing. Therefore $\lim _{k \rightarrow \infty}\left[\left\|x_{k}-\hat{x}\right\|^{2}+\left\|y_{k}-\hat{y}\right\|^{2}\right]$ exists, and the sequence $\left(x_{k}, y_{k}\right)$ is bounded. Suppose $\left(x_{n_{k}}, y_{n_{k}}\right)$ converges to some $\left(x_{\infty}, y_{\infty}\right)$. From $7, x_{\infty}$ is a solution of (\mathcal{P}). On the other hand, by 4 (with $k+1$ replaced by k), we have

$$
f(z) \geq f\left(x_{k}\right)+\left(-A^{*} p_{k}-\frac{1}{\gamma}\left(x_{k}-x_{k-1}\right)\right) \cdot\left(z-x_{k}\right)
$$

for all z. Since $\lim _{k \rightarrow \infty}\left\|p_{k}-y_{k}\right\|=\lim _{k \rightarrow \infty}\left\|x_{k}-x_{k-1}\right\|=0$, we can pass to the limit in the inequality above to obtain

$$
f(z) \geq f\left(x_{\infty}\right)+\left(-A^{*} y_{\infty}\right) \cdot\left(z-x_{\infty}\right)
$$

for all z, and conclude that $-A^{*} y_{\infty} \in \partial f\left(x_{\infty}\right)$. It follows that $\left(x_{\infty}, y_{\infty}\right)$ is an optimal pair, and so $\lim _{k \rightarrow \infty}\left[\left\|x_{k}-x_{\infty}\right\|^{2}+\left\|y_{k}-y_{\infty}\right\|^{2}\right]$ must be 0 .

[^0]: ${ }^{1}$ Since f is continuous, we have $\partial\left(f+\iota_{V}\right)=\partial f+\partial \iota_{V}$. You do not need to prove this.

