Introduction to Optimization. Mock Exam 2022-2023.

Consider the problem (P) of minimizing a continuous convex function f : R¥ — R over the affine
subspace V = {z € RY : Az = b}, for given A € R™*N and b € RM.

1. If ¢y denotes the indicator function of V, prove that duy(z) = ran (A*) for each x € V.
Suggestion: How is V' related to ker(A) (= ran (A*)*+)?

For any xo € V, we have V' = zy + ker(A). As seen in class, duy(x) = 0 if 2 ¢ V and
Owy(x)={z:2-(v—2) <0V eV}={z:2-v<0Vveker(A)} = ker(A)+ = ran (A*) if
xeV.

2. Use the first order optimality condition for (P), obtained from Fermat’s Rule, to show
that 7 is a solution of (P) if, and only if, AZ = b and there exists § € R such that
—A*g € 0f(z).} We say (Z,9) is an optimal pair. Is this related to Lagrange multipliers?
The problem is to minimize f + ¢, over RY. By convexity, 4 is a solution if, and only if,
0 € 0f(z) + Ovy (), which means that 2 € V and 0 € df(2) + 2 for some 2 € ran (A¥).
This is equivalent to saying that there is § € RM such that —A*§ € f(%). The Lagrange
multiplier theorem seen in class for the differentiable case (Lecture 9) gives —A*y € V f(2)
(see also Lecture 11).

3. Define the Lagrangian of the problem by L(z,y) = f(z)+y-(Ax —b), for (x,y) € RY x RM,
Show that if (Z, ) is an optimal pair, then
L(,y) < L(2,9) < L(z,9)
for all (z,y) € RN x RM.
The first inequality is an equality bocaus‘c Az = b. Now, since —A*y € Vf(z), the sub-
gradient inequality gives f(z) > f(z) — A*y- (x — ). It suffices to add y - (Ax — b) on both
sides (and use the property of the tldIlbp()bC) to get the second inequality.

In what follows, we establish the convergence of the algorithm given by

Pr+1 — argmax {ﬁ(xk, y) - %Hy — kaQ Cy € RM}
Tpr1 = argmin {ﬁ(x,pkﬂ) + %”37 —al? iz e ]RN}
peor = argmax{ Lo, p) = Lly—wl? : y RV},

with v > 0, and starting from an initial point (x¢,) € RY x RM.

4. Write the optimality conditions corresponding to the three subiterations, in order to find
closed formulas for py,q and yi.1, and to express x;y1 in terms of a proximal step.
In the first, the functions involved are differntiable, so the optimality condition is Az, —b-+
%(pkH — k). In other words, pxr1 = yx + 7(Azyr — b). Similarly, yr1 = yx + 7(Azpyr — b).
For the second inequality, we have 0 € Of (xgy1) + A* 1 + %(:l;k+1 — x), which is the same
as Tr41 = (I + Af’/a.f)il (élfk; - ”;r'A*Pk;H)-

In parts 5, 6 and 7, (z,9) is any optimal pair.
5. Prove that

2’7(£($k+1,pk+1) L(&,pr1)) < loe =27 = owps — 21 = lJoge — 2
29(L(xr41,9) — L@, Yrs1)) < ok — 917 = Ny — 917 = Nlwesr — vell®
29 (L(@hs1, Ynr1) — L(@nr1,0011)) < 0yt — Dot l? + $lywsr — vell?

Since f is continuous, we have (f + ty/) = df + Oiyy. You do not need to prove this.



for every k > 0 and § > 0. Suggestion: Remember (1) the definition of subgradient, and
(2) that 2ab < da® + 3b* for a,b,6 > 0.
By 4, —A*ppi1 — %($k+] — ) € Of (xg11). Using the subgradient inequality, we obtain

L2, prir) = 27f(2)

27 f (1) = 29 (APrr1 + 5 (@er1 — 2x)) - (& — Tapa)

= 29f(@r41) = 29A Dks1 - (T — Tpg1) + 2(Tps1 — @k) - (T — Tpya)
= 29L(Tk+1, Prr1) + 2(Tpr — $k)) (= Tpr)-

Y

We use ||a & b||* = ||a]|* + ||b]|* & 2a - b conveniently to obtain the first inequality. The
second inequality is obtained by rewriting the left-hand side as 2y(y — yg11) - (Azg1 —b) =
2(9 — Yk+1) - (Ype1 — yx). For the last one, we use Cauchy-Schwarz inequality and the second
suggestion.

. Show that if v||A|| < 1, there is € > 0 such that
@1 =2+ [yrsr =917 +29 (L1, §) = L(&, o)) Fell Azpsr —b* < [lon—211°+[lyw— 3

for every k£ > 0.

We sum the three inequalities in 5 and choose 0 appropriately to cancel the remaining
terms: First observe that |ypr1 — pra1l] = [VA(@er1 — z0) || < Y| AJll|2ks1 — xk||. I we take
§ € (1, (v|Al)™?) both [|zrs1 — xx]|* and [Jyrs1 — y&l|* remain with negative coefficients.
Actually, we have proved that there exist €1, > 0 such that

g1 =212+ Nlyeer — 9117 + 27 (L(@pir, §) — L&, prs1)) + 1l Az — b)) + 2| zpga — 22 )?
< o = 2[° + [y — 91I*
for every k > 0.

. Deduce that lim f(zx) = f(2) and lim Az, = 0.
k—o0 k—o00

Using the telescopic property, we see that the nonnegative series » (L(zyy1,7) — L(Z, pk+1))
and Y [[Azpy1 — b||* are convergent, so their general terms go to 0.

. Prove that (xy,yx) converges to an optimal pair. Suggestion: Verify that for every optimal
pair (2.), Jim [z — [ + [l — 9]1] exists

C [e.o]
From 6, the nonnegative sequence ||z — Z||* + |lyx — ¥||* is nonincreasing. Therefore
klim |2k — 2|1> + lyx — 9]|] exists, and the sequence (z, yx) is bounded. Suppose (Zp,, Yn,)
—00

converges to some (Too,Yoo). From 7, z is a solution of (P). On the other hand, by 4
(with k + 1 replaced by k), we have

f(2) 2 flan) + (= A — 5w — 2p-1)) - (2 — )

for all z. Since lim ||pr — yi|| = lim ||zx — 2x—1|| = 0, we can pass to the limit in the
k—ro00 k—o0

inequality above to obtain

f(z) > f(QZOO) + (_A*yw> ’ (Z - xoo),

for all z, and conclude that —A*y., € 0f(xs). It follows that (74, Yso) is an optimal pair,
and so lim [llze = zoo||? + [|yk — Yool|?] must be 0.
—00



