Introduction to Optimization. Mock Exam 2022-2023.

Consider the problem (\mathcal{P}) of minimizing a continuous convex function $f: \mathbb{R}^N \to \mathbb{R}$ over the affine subspace $V = \{x \in \mathbb{R}^N : Ax = b\}$, for given $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^M$.

- 1. If ι_V denotes the indicator function of V, prove that $\partial\iota_V(x) = \operatorname{ran}(A^*)$ for each $x \in V$. Suggestion: How is V related to $\ker(A)$ $(= \operatorname{ran}(A^*)^{\perp})$? For any $x_0 \in V$, we have $V = x_0 + \ker(A)$. As seen in class, $\partial\iota_V(x) = \emptyset$ if $x \notin V$ and $\partial\iota_V(x) = \{z : z \cdot (v x) \leq 0 \ \forall v \in V\} = \{z : z \cdot v \leq 0 \ \forall v \in \ker(A)\} = \ker(A)^{\perp} = \operatorname{ran}(A^*)$ if $x \in V$.
- 2. Use the first order optimality condition for (\mathcal{P}) , obtained from Fermat's Rule, to show that \hat{x} is a solution of (\mathcal{P}) if, and only if, $A\hat{x} = b$ and there exists $\hat{y} \in \mathbb{R}^M$ such that $-A^*\hat{y} \in \partial f(\hat{x})$. We say (\hat{x}, \hat{y}) is an *optimal pair*. Is this related to Lagrange multipliers? The problem is to minimize $f + \iota_V$ over \mathbb{R}^N . By convexity, \hat{x} is a solution if, and only if, $0 \in \partial f(\hat{x}) + \partial \iota_V(\hat{x})$, which means that $\hat{x} \in V$ and $0 \in \partial f(\hat{x}) + \hat{z}$ for some $\hat{z} \in \text{ran } (A^*)$. This is equivalent to saying that there is $\hat{y} \in \mathbb{R}^M$ such that $-A^*\hat{y} \in \partial f(\hat{x})$. The Lagrange multiplier theorem seen in class for the differentiable case (Lecture 9) gives $-A^*\hat{y} \in \nabla f(\hat{x})$ (see also Lecture 11).
- 3. Define the Lagrangian of the problem by $\mathcal{L}(x,y) = f(x) + y \cdot (Ax b)$, for $(x,y) \in \mathbb{R}^N \times \mathbb{R}^M$. Show that if (\hat{x}, \hat{y}) is an optimal pair, then

$$\mathcal{L}(\hat{x}, y) \le \mathcal{L}(\hat{x}, \hat{y}) \le \mathcal{L}(x, \hat{y})$$

for all $(x, y) \in \mathbb{R}^N \times \mathbb{R}^M$.

The first inequality is an equality because $A\hat{x} = b$. Now, since $-A^*\hat{y} \in \nabla f(\hat{x})$, the subgradient inequality gives $f(x) \geq f(\hat{x}) - A^*\hat{y} \cdot (x - \hat{x})$. It suffices to add $y \cdot (Ax - b)$ on both sides (and use the property of the transpose) to get the second inequality.

In what follows, we establish the convergence of the algorithm given by

$$\begin{cases} p_{k+1} &= \arg\max\left\{\mathcal{L}(x_k, y) - \frac{1}{2\gamma} \|y - y_k\|^2 : y \in \mathbb{R}^M\right\} \\ x_{k+1} &= \arg\min\left\{\mathcal{L}(x, p_{k+1}) + \frac{1}{2\gamma} \|x - x_k\|^2 : x \in \mathbb{R}^N\right\} \\ y_{k+1} &= \arg\max\left\{\mathcal{L}(x_{k+1}, y) - \frac{1}{2\gamma} \|y - y_k\|^2 : y \in \mathbb{R}^M\right\}, \end{cases}$$

with $\gamma > 0$, and starting from an initial point $(x_0, y_0) \in \mathbb{R}^N \times \mathbb{R}^M$.

4. Write the optimality conditions corresponding to the three subiterations, in order to find closed formulas for p_{k+1} and y_{k+1} , and to express x_{k+1} in terms of a proximal step. In the first, the functions involved are differntiable, so the optimality condition is $Ax_k - b + \frac{1}{\gamma}(p_{k+1} - y_k)$. In other words, $p_{k+1} = y_k + \gamma(Ax_k - b)$. Similarly, $y_{k+1} = y_k + \gamma(Ax_{k+1} - b)$. For the second inequality, we have $0 \in \partial f(x_{k+1}) + A^*p_{k+1} + \frac{1}{\gamma}(x_{k+1} - x_k)$, which is the same as $x_{k+1} = (I + \gamma \partial f)^{-1}(x_k - \gamma A^*p_{k+1})$.

In parts 5, 6 and 7, (\hat{x}, \hat{y}) is any optimal pair.

5. Prove that

$$2\gamma \left(\mathcal{L}(x_{k+1}, p_{k+1}) - \mathcal{L}(\hat{x}, p_{k+1}) \right) \leq \|x_k - \hat{x}\|^2 - \|x_{k+1} - \hat{x}\|^2 - \|x_{k+1} - x_k\|^2$$

$$2\gamma \left(\mathcal{L}(x_{k+1}, \hat{y}) - \mathcal{L}(x_{k+1}, y_{k+1}) \right) \leq \|y_k - \hat{y}\|^2 - \|y_{k+1} - \hat{y}\|^2 - \|y_{k+1} - y_k\|^2$$

$$2\gamma \left(\mathcal{L}(x_{k+1}, y_{k+1}) - \mathcal{L}(x_{k+1}, p_{k+1}) \right) \leq \delta \|y_{k+1} - p_{k+1}\|^2 + \frac{1}{\delta} \|y_{k+1} - y_k\|^2$$

¹Since f is continuous, we have $\partial(f + \iota_V) = \partial f + \partial \iota_V$. You do not need to prove this.

for every $k \geq 0$ and $\delta > 0$. Suggestion: Remember (1) the definition of subgradient, and (2) that $2ab \leq \delta a^2 + \frac{1}{\delta}b^2$ for $a, b, \delta > 0$.

By 4, $-A^*p_{k+1} - \frac{1}{2}(x_{k+1}^* - x_k) \in \partial f(x_{k+1})$. Using the subgradient inequality, we obtain

$$2\gamma \mathcal{L}(\hat{x}, p_{k+1}) = 2\gamma f(\hat{x})
\geq 2\gamma f(x_{k+1}) - 2\gamma \left(A^* p_{k+1} + \frac{1}{\gamma} (x_{k+1} - x_k)\right) \cdot (\hat{x} - x_{k+1})
= 2\gamma f(x_{k+1}) - 2\gamma A^* p_{k+1} \cdot (\hat{x} - x_{k+1}) + 2(x_{k+1} - x_k) \cdot (\hat{x} - x_{k+1})
= 2\gamma \mathcal{L}(x_{k+1}, p_{k+1}) + 2(x_{k+1} - x_k) \cdot (\hat{x} - x_{k+1}).$$

We use $||a \pm b||^2 = ||a||^2 + ||b||^2 \pm 2a \cdot b$ conveniently to obtain the first inequality. The second inequality is obtained by rewriting the left-hand side as $2\gamma(\hat{y} - y_{k+1}) \cdot (Ax_{k+1} - b) = 2(\hat{y} - y_{k+1}) \cdot (y_{k+1} - y_k)$. For the last one, we use Cauchy-Schwarz inequality and the second suggestion.

6. Show that if $\gamma ||A|| < 1$, there is $\varepsilon > 0$ such that

$$||x_{k+1} - \hat{x}||^2 + ||y_{k+1} - \hat{y}||^2 + 2\gamma \left(\mathcal{L}(x_{k+1}, \hat{y}) - \mathcal{L}(\hat{x}, p_{k+1})\right) + \varepsilon ||Ax_{k+1} - b||^2 \le ||x_k - \hat{x}||^2 + ||y_k - \hat{y}||^2$$

for every $k \geq 0$.

We sum the three inequalities in 5 and choose δ appropriately to cancel the remaining terms: First observe that $||y_{k+1} - p_{k+1}|| = ||\gamma A(x_{k+1} - x_k)|| \le \gamma ||A|| ||x_{k+1} - x_k||$. If we take $\delta \in (1, (\gamma ||A||)^{-2})$ both $||x_{k+1} - x_k||^2$ and $||y_{k+1} - y_k||^2$ remain with negative coefficients. Actually, we have proved that there exist $\varepsilon_1, \varepsilon_2 > 0$ such that

$$||x_{k+1} - \hat{x}||^2 + ||y_{k+1} - \hat{y}||^2 + 2\gamma \left(\mathcal{L}(x_{k+1}, \hat{y}) - \mathcal{L}(\hat{x}, p_{k+1}) \right) + \varepsilon_1 ||Ax_{k+1} - b||^2 + \varepsilon_2 ||x_{k+1} - x_k||^2$$

$$\leq ||x_k - \hat{x}||^2 + ||y_k - \hat{y}||^2$$

for every $k \geq 0$.

7. Deduce that $\lim_{k\to\infty} f(x_k) = f(\hat{x})$ and $\lim_{k\to\infty} Ax_k = b$.

Using the telescopic property, we see that the nonnegative series $\sum (\mathcal{L}(x_{k+1}, \hat{y}) - \mathcal{L}(\hat{x}, p_{k+1}))$ and $\sum ||Ax_{k+1} - b||^2$ are convergent, so their general terms go to 0.

8. Prove that (x_k, y_k) converges to an optimal pair. Suggestion: Verify that for every optimal pair (\hat{x}, \hat{y}) , $\lim_{k \to \infty} [\|x_k - \hat{x}\|^2 + \|y_k - \hat{y}\|^2]$ exists.

From 6, the nonnegative sequence $||x_k - \hat{x}||^2 + ||y_k - \hat{y}||^2$ is nonincreasing. Therefore $\lim_{k\to\infty} \left[||x_k - \hat{x}||^2 + ||y_k - \hat{y}||^2\right]$ exists, and the sequence (x_k, y_k) is bounded. Suppose (x_{n_k}, y_{n_k}) converges to some (x_{∞}, y_{∞}) . From 7, x_{∞} is a solution of (\mathcal{P}) . On the other hand, by 4 (with k+1 replaced by k), we have

$$f(z) \ge f(x_k) + \left(-A^*p_k - \frac{1}{2}(x_k - x_{k-1})\right) \cdot (z - x_k)$$

for all z. Since $\lim_{k\to\infty} ||p_k-y_k|| = \lim_{k\to\infty} ||x_k-x_{k-1}|| = 0$, we can pass to the limit in the inequality above to obtain

$$f(z) \ge f(x_{\infty}) + (-A^*y_{\infty}) \cdot (z - x_{\infty}),$$

for all z, and conclude that $-A^*y_{\infty} \in \partial f(x_{\infty})$. It follows that (x_{∞}, y_{∞}) is an optimal pair, and so $\lim_{k \to \infty} \left[\|x_k - x_{\infty}\|^2 + \|y_k - y_{\infty}\|^2 \right]$ must be 0.