
Introduction to Optimization. Mock Exam 2022-2023.

Consider the problem (P) of minimizing a continuous convex function f : RN → R over the affine
subspace V = {x ∈ RN : Ax = b}, for given A ∈ RM×N and b ∈ RM .

1. If ιV denotes the indicator function of V , prove that ∂ιV (x) = ran (A∗) for each x ∈ V .
Suggestion: How is V related to ker(A)

(
= ran (A∗)⊥

)
?

For any x0 ∈ V , we have V = x0 + ker(A). As seen in class, ∂ιV (x) = ∅ if x /∈ V and
∂ιV (x) = {z : z · (v− x) ≤ 0 ∀v ∈ V } = {z : z · v ≤ 0 ∀v ∈ ker(A)} = ker(A)⊥ = ran (A∗) if
x ∈ V .

2. Use the first order optimality condition for (P), obtained from Fermat’s Rule, to show
that x̂ is a solution of (P) if, and only if, Ax̂ = b and there exists ŷ ∈ RM such that
−A∗ŷ ∈ ∂f(x̂).1 We say (x̂, ŷ) is an optimal pair. Is this related to Lagrange multipliers?
The problem is to minimize f + ιV over RN . By convexity, x̂ is a solution if, and only if,
0 ∈ ∂f(x̂) + ∂ιV (x̂), which means that x̂ ∈ V and 0 ∈ ∂f(x̂) + ẑ for some ẑ ∈ ran (A∗).
This is equivalent to saying that there is ŷ ∈ RM such that −A∗ŷ ∈ ∂f(x̂). The Lagrange
multiplier theorem seen in class for the differentiable case (Lecture 9) gives −A∗ŷ ∈ ∇f(x̂)
(see also Lecture 11).

3. Define the Lagrangian of the problem by L(x, y) = f(x)+y · (Ax−b), for (x, y) ∈ RN ×RM .
Show that if (x̂, ŷ) is an optimal pair, then

L(x̂, y) ≤ L(x̂, ŷ) ≤ L(x, ŷ)

for all (x, y) ∈ RN × RM .
The first inequality is an equality because Ax̂ = b. Now, since −A∗ŷ ∈ ∇f(x̂), the sub-
gradient inequality gives f(x) ≥ f(x̂)−A∗ŷ · (x− x̂). It suffices to add y · (Ax− b) on both
sides (and use the property of the transpose) to get the second inequality.

In what follows, we establish the convergence of the algorithm given by
pk+1 = argmax

{
L(xk, y)− 1

2γ
∥y − yk∥2 : y ∈ RM

}
xk+1 = argmin

{
L(x, pk+1) +

1
2γ
∥x− xk∥2 : x ∈ RN

}
yk+1 = argmax

{
L(xk+1, y)− 1

2γ
∥y − yk∥2 : y ∈ RM

}
,

with γ > 0, and starting from an initial point (x0, y0) ∈ RN × RM .

4. Write the optimality conditions corresponding to the three subiterations, in order to find
closed formulas for pk+1 and yk+1, and to express xk+1 in terms of a proximal step.
In the first, the functions involved are differntiable, so the optimality condition is Axk− b+
1
γ
(pk+1 − yk). In other words, pk+1 = yk + γ(Axk − b). Similarly, yk+1 = yk + γ(Axk+1 − b).

For the second inequality, we have 0 ∈ ∂f(xk+1)+A∗pk+1+
1
γ
(xk+1−xk), which is the same

as xk+1 = (I + γ∂f)−1
(
xk − γA∗pk+1

)
.

In parts 5, 6 and 7, (x̂, ŷ) is any optimal pair.

5. Prove that

2γ
(
L(xk+1, pk+1)− L(x̂, pk+1)

)
≤ ∥xk − x̂∥2 − ∥xk+1 − x̂∥2 − ∥xk+1 − xk∥2

2γ
(
L(xk+1, ŷ)− L(xk+1, yk+1)

)
≤ ∥yk − ŷ∥2 − ∥yk+1 − ŷ∥2 − ∥yk+1 − yk∥2

2γ
(
L(xk+1, yk+1)− L(xk+1, pk+1)

)
≤ δ∥yk+1 − pk+1∥2 + 1

δ
∥yk+1 − yk∥2

1Since f is continuous, we have ∂(f + ιV ) = ∂f + ∂ιV . You do not need to prove this.



for every k ≥ 0 and δ > 0. Suggestion: Remember (1) the definition of subgradient, and
(2) that 2ab ≤ δa2 + 1

δ
b2 for a, b, δ > 0.

By 4, −A∗pk+1 − 1
γ
(xk+1 − xk) ∈ ∂f(xk+1). Using the subgradient inequality, we obtain

2γL(x̂, pk+1) = 2γf(x̂)

≥ 2γf(xk+1)− 2γ
(
A∗pk+1 +

1
γ
(xk+1 − xk)

)
· (x̂− xk+1)

= 2γf(xk+1)− 2γA∗pk+1 · (x̂− xk+1) + 2(xk+1 − xk) · (x̂− xk+1)

= 2γL(xk+1, pk+1) + 2(xk+1 − xk)
)
· (x̂− xk+1).

We use ∥a ± b∥2 = ∥a∥2 + ∥b∥2 ± 2a · b conveniently to obtain the first inequality. The
second inequality is obtained by rewriting the left-hand side as 2γ(ŷ− yk+1) · (Axk+1− b) =
2(ŷ−yk+1) · (yk+1−yk). For the last one, we use Cauchy-Schwarz inequality and the second
suggestion.

6. Show that if γ∥A∥ < 1, there is ε > 0 such that

∥xk+1−x̂∥2+∥yk+1−ŷ∥2+2γ
(
L(xk+1, ŷ)−L(x̂, pk+1)

)
+ε∥Axk+1−b∥2 ≤ ∥xk−x̂∥2+∥yk−ŷ∥2

for every k ≥ 0.
We sum the three inequalities in 5 and choose δ appropriately to cancel the remaining
terms: First observe that ∥yk+1 − pk+1∥ = ∥γA(xk+1 − xk)∥ ≤ γ∥A∥∥xk+1 − xk∥. If we take
δ ∈ (1, (γ∥A∥)−2) both ∥xk+1 − xk∥2 and ∥yk+1 − yk∥2 remain with negative coefficients.
Actually, we have proved that there exist ε1, ε2 > 0 such that

∥xk+1 − x̂∥2 + ∥yk+1 − ŷ∥2 +2γ
(
L(xk+1, ŷ)−L(x̂, pk+1)

)
+ ε1∥Axk+1 − b∥2 + ε2∥xk+1 − xk∥2

≤ ∥xk − x̂∥2 + ∥yk − ŷ∥2

for every k ≥ 0.

7. Deduce that lim
k→∞

f(xk) = f(x̂) and lim
k→∞

Axk = b.
Using the telescopic property, we see that the nonnegative series

∑
(L(xk+1, ŷ)−L(x̂, pk+1)

)
and

∑
∥Axk+1 − b∥2 are convergent, so their general terms go to 0.

8. Prove that (xk, yk) converges to an optimal pair. Suggestion: Verify that for every optimal
pair (x̂, ŷ), lim

k→∞

[
∥xk − x̂∥2 + ∥yk − ŷ∥2

]
exists.

From 6, the nonnegative sequence ∥xk − x̂∥2 + ∥yk − ŷ∥2 is nonincreasing. Therefore
lim
k→∞

[
∥xk− x̂∥2+∥yk− ŷ∥2

]
exists, and the sequence (xk, yk) is bounded. Suppose (xnk

, ynk
)

converges to some (x∞, y∞). From 7, x∞ is a solution of (P). On the other hand, by 4
(with k + 1 replaced by k), we have

f(z) ≥ f(xk) +
(
− A∗pk − 1

γ
(xk − xk−1)

)
· (z − xk)

for all z. Since lim
k→∞

∥pk − yk∥ = lim
k→∞

∥xk − xk−1∥ = 0, we can pass to the limit in the
inequality above to obtain

f(z) ≥ f(x∞) + (−A∗y∞) · (z − x∞),

for all z, and conclude that −A∗y∞ ∈ ∂f(x∞). It follows that (x∞, y∞) is an optimal pair,
and so lim

k→∞

[
∥xk − x∞∥2 + ∥yk − y∞∥2

]
must be 0.


